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Abstract
We study structural transitions in a system of interacting particles arranged as a crystalline
bilayer, as a function of the density ρ and the distance d between the layers. As d is decreased a
sequence of transitions involving triangular, rhombic, square and centred rectangular lattices is
observed. The sequence of phases and the order of transitions depends on the nature of the
interactions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Structural transitions in solids may be caused by various
external parameters such as temperature, pressure, stress,
electrical and magnetic fields [1, 2], etc. Confinement and
dimensional reduction can also lead to structural transitions
especially in soft solids like colloidal suspensions. Colloidal
solids are especially suited to modification and manipulation
using a variety of means such as structural confinement [3],
laser-induced phase transitions [4], shear [5], static [6] and
dynamic [7] external fields.

Confined colloids kept in a thin wedge geometry of two
optically flat quartz glass plates exhibit a sequence of structural
transitions: n� → (n + 1)� → (n + 1)� with increasing
wedge height, where n is the number of layers and � and
� correspond to layers of triangular (p6) and square (p4m)
symmetry, respectively [8, 9]. The full equilibrium phase
diagram of such a system has been studied analytically as
well as using extensive computer simulations [10, 11]. The
transitions are usually first order, though continuous transitions
via a layer buckling mechanism [12] has also been predicted
and observed.

In this paper, we explore another way in which structural
transitions may be induced in a colloidal solid. Consider a
crystalline bilayer separated by a distance d between the layers.

Each of these layers is held in place by individual trapping
potentials, set up, for example, using laser tweezers [13]. The
strong trapping potential ensures that out-of-layer fluctuations
are typically unimportant. We investigate the stability of
the bilayer as the distance d is decreased. We show that d
behaves as a controlling parameter and induces a rich sequence
of transitions involving a variety of two-dimensional Bravais
lattices. The exact sequence of transitions crucially depends
on the nature of interactions. In this paper we study two kinds
of model solids: (a) the generic Lennard-Jones (LJ) [14] solid
and (b) the soft Gaussian core model (GCM) [15] appropriate
for suspensions of globular polymers. Our main results are
as follows. For the LJ system, we obtain at temperature
T = 0 two independent triangular (TRN) crystalline layers
for large d . As d is reduced, the system undergoes a first-
order transition to a staggered square (SQR) solid. This
SQR solid continuously transforms to a TRN solid through
a series of centred rectangular (CR) lattices with intermediate
aspect ratios as d decreases to zero as the layers merge. Our
calculations are therefore relevant for structurally confined
simple soft solids where buckling transitions are suppressed
due to a strong external trapping potential [3, 10, 11].

In contrast, for the GCM, both transitions are continuous.
As d reduces, the TRN solid transforms to a SQR solid
continuously through a sequence of rhombic (RMB) lattices.
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The SQR solid subsequently transforms back to the TRN solid
for small values of d , again continuously using a sequence
of CR lattices. The progression of phases seen corresponds
roughly with those seen in the extensive literature on classical
interacting bilayer Wigner crystals [16], though the sequence
of phases and the nature of transitions are different.

The rest of this paper is organized as follows. In section 2,
we describe the bilayer system in detail, introducing the
order parameters for the transition and state the interatomic
potentials used. In section 3, we give the results for the zero-
temperature energy minimization. This is followed in section 4
by a full normal mode analysis investigating the stability of
the ground states obtained in section 3 and the nature of the
transition. In section 5, we present results of finite temperature
Monte Carlo simulations. We discuss our results and their
implications and conclude in section 6.

2. Model system

Consider a system of 2N particles arranged as two parallel
two-dimensional crystalline layers of N particles each (see
figure 1). The crystal structure of each of these layers may be
assumed to be a general two-dimensional oblique (p2) lattice.
Each particle interacts with all other particles via isotropic and
pairwise interacting potentials. The position vector for the i th
particle of this lattice can thus be expressed as

�ri = (m + λ)�a + (n + λ)�b + dẑ

= ((m + λ)a + (n + λ)b cosφ)x̂ + (n + λ)b sinφ ŷ + dẑ

(1)

where m, n = 0, 1, 2, . . ., �a and �b are two in-plane basis
vectors, φ is the angle between these two basis vectors, d is
the inter-layer separation and λ is a shift between the centre of
masses of two layers (figure 1). Therefore to specify our model
completely, knowledge of these five variables, a, b, φ, d, λ is
sufficient. The last variable λ ensures that, for small values
of d , the particles from different layers do not overlap. The
particles are not allowed to fluctuate out of the layers and
particle exchange between the layers is prohibited. Each layer
is therefore considered to be strongly confined in the ẑ direction
while they are allowed complete freedom in the x, y plane.

Let us first imagine the possible physical scenario as the
layers are brought close to each other starting from a large
inter-layer separation. When the layers are well apart they
exist as two independent monolayers and they show TRN
symmetry, the minimum energy configuration for the two-
dimensional crystalline system for the interaction potentials
considered by us. As the inter-layer separation, d , between
these two layers starts decreasing, the system passes through
a series of structural transitions which may involve RMB
and SQR phases. For even smaller values of d , two layers
start merging into one and the TRN symmetry is regained.
Transformation between an SRQ and a TRN phase may be
accomplished, in general, by either (i) shear, i.e. change in
the angle between two in-plane basis vectors producing an
intermediate RMB structure, or (ii) change in the aspect ratio
(b/a) which produces a CR lattice. Both the RMB and the CR

a

b

λ

φ

d

Figure 1. A schematic diagram of the model bilayer solid explaining
the structural parameters. The crystal structures on each of the layers,
denoted by filled and open circles, are identical but staggered by the
amount λ along the diagonal. The lattice parameters are a and b and
the apex angle is φ. The half-filled circle is the projection of a lattice
point (filled circle) on the top layer to the bottom one.

lattices being less symmetric have TRN and SQR phases as
limiting cases.

It is therefore clear that we need to introduce two order
parameters [17] in order to describe completely the phase
transitions of our model system. First, the bond angle order
parameter ψ = cosφ which is 0 when the system takes
SQR symmetry (φ = 90◦) and non-zero otherwise. The
second-order parameter ξ is related to the aspect ratio b/a as
ξ = (b/a − 1)/(

√
3 − 1) which varies from 0 in the SQR

to a non-zero value in the CR phase. Note that the highly
symmetric TRN phase is described both by (ψ = 0.5, ξ = 0)
and (ψ = 0.0, ξ = 1). Finally, if εi j , i, j = x, y is the two-
dimensional strain tensor, the shear, e3 = εxy , and deviatoric,
e2 = εxx − εyy , strains are related to φ and ξ as

tanφ = ε3/(1 − ε1)

ξ = 2(1 + ε2)+ ε1

2(1 − ε2)+ ε1
.

(2)

We have studied phase transitions in the bilayer system for
two different model potentials. The Lennard-Jones potential:

U =
∑

i �= j

VLJ(ri j) = 4ε

[(
σ

ri j

)12

−
(
σ

ri j

)6]
(3)

has been used extensively in the past as a generic model which
includes both long range attractive and short range repulsive
interactions. In equation (3), ri j = |�ri − �r j |, the distance
between the i and j th particle. An intrinsic length scale
rmin = 21/6σ corresponding to the minimum of VLJ may be
associated with this potential. The nearest-neighbour distance
between particles is close to this value throughout. We use
reduced units for the LJ potential throughout the paper defining
lengths in units of σ and energy in units of ε. It follows that the
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Figure 2. (a) Plots of the total energy as a function of ψ at ρ = 1.2 and (top to bottom) d = 0.66, 0.68, 0.70 and 0.72 showing the SQR to
TRN transition for the LJ system. Inset: the energies of the SQR (filled square) and TRN (filled triangles) plotted as a function of d are seen to
cross with a change in slope as expected of a first-order transition. The fact that this transition is first order has also been verified by a normal
mode analysis. (b) Plot of the order parameter ξ as a function of d at the same density showing the continuous transition SQR → TRN as
d → 0. The lattices with intermediate ξ have CR symmetry.

densities are in units of σ−2 and temperatures in units of ε/kB,
where kB is the Boltzmann factor.

On the other hand, the Gaussian core potential has been
used specifically to model soft solids:

U =
∑

i �= j

VGCM(ri j )

=
∑

i �= j

V0 exp[−(ri j/ l)2], V0, l > 0 (4)

V0 and l acts as the energy and length scales for this potential
and ri j is the same as it was for the previous equation. The
GCM is interesting because, firstly, the potential is soft and is
known to display behaviour similar to that of real polymeric
solids. Also, many of its properties are well known and tested
especially because at very low densities it reduces to the hard
disc model which is widely used for modelling colloidal solids.
Due to the purely repulsive nature of this potential, it does
not have any preferred nearest-neighbour distance which is
determined in this case by the density. This potential also
possesses an interesting duality property [18] such that high
(ρ>) and low (ρ<) density properties are related to each other
by

ρ>ρ< = π−D (5)

where D is the dimensionality. It is therefore sufficient to
confine our studies in the range 0 < ρ < ρf.p. where the fixed
point density ρf.p. = π−1 � 0.32 in two dimensions.

3. Zero-temperature calculation

In this section, we determine the ground states of our system in
the space of the order parameters, φ and ξ , keeping the layer
separation d and the density ρ as external parameters. Below
we discuss our results for the LJ solid and the GCM one after
the other.

3.1. Lennard-Jones potential

We begin with 2N particles divided into two layers, each
arranged in a TRN lattice of N particles. For a fixed layer
separation d , and the lattice parameter a set by the density ρ,
we minimize the total energy U with respect to λ and b. The
resulting order parameter ξ remains constant at 1—the value
appropriate for the TRN lattice. For the lattice sums needed
to calculate the minimized energy we have set a cutoff radius,
rc = 2.5σ .

In figure 2(a) we have plotted the minimized energy Umin

as a function of the order parameter ψ for various values
of d . For large inter-layer separation, the bond angle order
parameter at the minimized energy (Umin) shows a non-zero
value, ψ = cosφ = 0.5, which indicates TRN symmetry
(φ = 60◦). The minimum in λ is very shallow indicating
two triangular lattices prefer to remain independent. As d is
decreased two layers fall into registry and for a further decrease
of d a second minimum at ψ = 0 develops, corresponding to
the SQR phase (φ = 90◦). A plot of the energy of the SQR and
TRN phases (figure 2(a) inset) shows a first-order transition at
d = 0.684. This fact is confirmed by a normal mode analysis
presented in section 4.

At even smaller values of d , the square solid begins to
deform continuously by changing the aspect ratio (or order
parameter ξ ) at fixed φ. In figure 2(b) we have plotted the
minimized value of ξ versus d . From the plot it is obvious that
there is a continuous transition taking the solid from SQR at
ξ = 0 to an eventual TRN phase at ξ = 1 via an intermediate
CR lattice of 0 < ξ < 1.

3.2. Gaussian core model

Due to the purely repulsive nature of the Gaussian core
potential, it does not have any preferred nearest-neighbour
distance and the solid would disintegrate unless confined in all
directions. We have carried out all minimizations for a system
with fixed reduced density, ρ = 0.2. We have plotted the
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Figure 3. (a) Plot of the total energy in the GCM for ρ = 0.2 and (top to bottom) d = 1.4, 1.5, 1.6, 1.7 and 1.9 as a function of ψ . Note the
appearance of the minimum at ψ = 0.5 corresponding to the TRN lattice as d increases. (b) The continuous transition from the SQR to the
TRN lattice as d → 0.

Figure 4. Zero-temperature phase diagrams in the ρ–d plane for the LJ (a) and GCM (b) systems. The various phases are marked. First-order
transitions are shown by solid lines and continuous transitions by dashed lines.

minimized energy Umin as a function of the bond angle order
parameter φ for various values of d . In figure 3(a) in contrast to
the Lennard-Jones solid we now obtain continuous transitions
from TRN to SQR through a set of RMB phases and back to
TRN at d = 0 through a set of CR phases.

Our results concerning the various ground states and
structural transitions in both the LJ and GCM systems in the
ρ–d plane have been shown in the zero-temperature phase
diagrams, figures 4(a) and (b), respectively. Note that for both
systems the triangular phase is stable at all ρ for both very
large d and d = 0 where the system becomes effectively two-
dimensional.

4. Normal mode analysis

To further characterize the structural transitions in the two
systems, we have undertaken a normal mode analysis [19]
of the TRN and SQR solids obtained for each of the two
interactions.

Let �u(�ri) be the displacement of the i th particle from its
equilibrium position �ri . Within the harmonic approximation,
now the potential can be written as

Uharm = 1
2

∑

i, j

�u(�ri )D(�ri − �r j )�u(�r j) (6)

D(�ri − �r j ) = Dμν(�ri − �r j )

= δ�ri �r j

∑

k

Vμν(�ri − �rk)− Vμν(�ri − �r j ) (7)

where Vμν(�r) = ∂2V/∂rμ∂rν . We have 2N equations of
motion, one for each of the three components of the N
particles, since we have already restricted fluctuation in the z
direction:

�̈u(�ri ) = −
∑

j

D(�ri − �r j)�u(�r j ). (8)

We seek solutions to the equations of motion in the form of
simple plane waves:

�u(�r , t) = �ε exp[i(�k · �r − ωt)]. (9)
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Figure 5. Results for phonon dispersion curves: (a) diagram showing the high symmetry points in the SQR and TRN (reciprocal) lattices.
(b) Phonon dispersion for the stable SQR lattice at ρ = 1.2 and d = dc = 0.684, i.e. the value of d at SQR to TRN transition. Note that the
dispersion curve shows that the SQR phase is locally stable pointing to a first-order transition. (c) Phonon dispersion of the SQR solid at
ρ = 1.2 and d = 0.4 showing an instability in the transverse acoustic branch. At this value of d a CR solid is stable. (d) Dispersion curve for
the TRN solid in the GCM for ρ = 0.2 and d = 1.6 showing the appearance of a non-zero k vector soft mode.

Here �ε is the polarization vector of the normal mode. The
Born–von Karman periodic boundary conditions restricts the
wavevector �k to a single primitive cell of the reciprocal lattice
vector, which is normally identified with the first Brillouin
zone.

Substituting equation (8) into equation (7) we find a
solution of the three-dimensional eigenvalue problem:

ω2�ε = D(�k)�ε. (10)

Here D(�k), the dynamical matrix, is given by

D(�k) =
∑

i

D(�ri )e
−i�k·�ri . (11)

Two solutions to equation (9) for each of the N allowed values
of �k give us 2N normal modes. The reciprocal lattices for both
SQR and TRN are known to have the same symmetry of the
real space lattice. Exploiting this property, one finds the values
of ω only for those k values along the lines connecting the
high symmetry points of the first Brillouin zone (figure 5(a)),
thereby obtaining the dispersion curve ω versus |�k| and mode
structure of a given lattice. For any stable equilibrium structure
ω should always be non-negative definite.

4.1. The Lennard-Jones potential

To show that the SQR � TRN transition at large d is indeed
first order, we have obtained the dispersion curves for the
metastable SQR phase for a value of d slightly larger than the
critical dc = 0.684 for the chosen ρ = 1.2. This is shown in

figure 5(b). This indicates that the transition is first order with
the possibility of coexistence. When d is decreased further, ψ
at the minimized energy Umin shows minima at ψ = 0 but the
normal mode analysis shows us that the SQR structure cannot
be stable at this value of d (figure 5(c)). Actually, the two
layers start merging into one by changing the aspect ratio away
from b/a = 1.

4.2. The Gaussian core model

For the Gaussian core model the scenario is quite different.
For intermediate values of d , the SQR structure is seen to be
unstable and the mode structure for the TRN structure exhibits
mode softening, figure 5(d), such that ω → 0 for k �= 0.
Examination of the deformation corresponding to this �k shows
that the SQR lattice becomes unstable to shear deformation at
the zone boundary. This mode softening therefore establishes
the transition from the TRN to SQR transition to be continuous
for the Gaussian core model.

The transition from SQR back to TRN at low d is always
continuous both for LJ and GCM as verified by our normal
mode analysis.

5. Finite temperature results

We close our discussion on structural transitions in a bilayer
crystal by briefly mentioning some of our results for the LJ case
using Monte Carlo simulations [20]. A detailed calculation of
the phase diagram of the bilayer GCM in the temperature, ρ
and d space using both Monte Carlo and classical mean field
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(a) (b)

(c) (d)

Figure 6. Configurations from our Monte Carlo simulation in the LJ system for T = 1.0. (a), (b) Show the result of increasing d from
d = 0.6 to 0.8 at fixed ρ = 1.20. Note the first-order SQR to TRN transition. (c), (d) Show the corresponding result for pressure-induced
SQR to TRN transition as ρ is increased from 1.3 to 1.4 at fixed d = 0.6. Our results are consistent with those seen in figure 4(a).

density functional theory, which is known to yield particularly
good results for this system, will be published elsewhere.

The simulation is done using the usual Metropolis
algorithm keeping the total number (N) of particles,
volume (V ) and temperature (T ) fixed. Periodic boundary
conditions have been used for all directions except in the
direction of stacking of the layers. For our purpose, we use
a system of 512 number of particles, temperature is fixed at
1.0 and the volume is determined by the density, ρ = 1.2,
used for simulation. Starting from a large layer separation
(d 	 0), we have observed (see figure 6) the system change
its symmetry from TRN to SQR with decreasing d . For large
values of d (d > 0.8), when the two layers are well separated,
each layer behaves independently of each other, exhibiting the
expected TRN structure. As d is decreased, the two layers start
interacting with each other. As a result, part of the system
starts to transform into a SQR. Through this phase coexistence,
the whole system transforms to a state where each layer shows
SQR structure at d = 0.6.

We have also explored the configurations of our model
system in the temperature–density plane keeping the inter-layer
separation fixed. For d = 0.6, where we have already seen
the SQR structure to be the ground state, we increase ρ to
1.3. We again encounter a first-order boundary and the system
equilibrates to the SQR structure.

The values of the critical d and ρ compare favourably with
the T = 0 phase diagram shown in figure 4(a). Similar scans
at other temperature values over a large range of ρ and d have
confirmed that it is not possible to induce a structural transition

Figure 7. The melting curve kBTm as a function of the reduced
density ρ showing TRN and SQR lattices as well as the liquid (LIQ)
phase for the LJ system. The melting points for each structure were
obtained within a simple Lindemann parameter analysis [16] with the
reduced root-mean-squared displacement of a particle assumed to be
≈0.1 times the lattice parameter at melting. The value of d is taken
as 0.4. The melting temperature reduces sharply with d approaching
the value at two dimensions d → ∞.

in this model by changing T . The phase boundaries shown in
figure 4 therefore extend vertically up to a melting temperature
Tm(ρ, d) (see figure 7). This behaviour is identical to that seen
in the classical Wigner crystal and is probably an universal
feature of such crystalline bilayers.
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6. Summary and conclusion

In this paper we have studied structural transitions in a bilayer
crystal. We have shown that the system has a rich phase
diagram and shows a number of phase transitions. The identity
of the phases and the nature of the transitions depend on the
interaction potential. On the other hand, some features of these
transitions, e.g. the overall topology of the phase diagram,
seems to be similar and independent of the details of the
interaction.

We believe that it may be easy to realize this soft
matter system experimentally and study many of its interesting
equilibrium and dynamic characteristics. For example, critical
properties of the continuous structural transitions, especially
near the melting line, and a detailed study of finite size scaling
and crossover in these systems may be illuminating [21].
We are also particularly interested in the dynamics of the
structural transitions for both the first-order and continuous
cases. Quenches from the SQR to the TRN lattice in this
system may be accomplished simply by changing d . How does
the new phase form inside the parent? Is there a possibility
of a martensitic transition [22, 23]? If so, then of what type?
We hope our work stimulates experiments designed to answer
these questions in the near future.
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